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A B S T R A C T   

Worldwide there have been over 760 million confirmed coronavirus disease 2019 (COVID-19) cases, and over 13 
billion COVID-19 vaccine doses have been administered as of April 2023, according to the World Health Or-
ganization. An infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to an acute 
disease, i.e. COVID-19, but also to a post-acute COVID-19 syndrome (PACS, “long COVID”). Currently, the side 
effects of COVID-19 vaccines are increasingly being noted and studied. Here, we summarise the currently 
available indications and discuss our conclusions that (i) these side effects have specific similarities and differ-
ences to acute COVID-19 and PACS, that (ii) a new term should be used to refer to these side effects (post-COVID- 
19 vaccination syndrome, PCVS, colloquially “post-COVIDvac-syndrome”), and that (iii) there is a need to 
distinguish between acute COVID-19 vaccination syndrome (ACVS) and post-acute COVID-19 vaccination syn-
drome (PACVS) – in analogy to acute COVID-19 and PACS (“long COVID”). Moreover, we address mixed forms of 
disease caused by natural SARS-CoV-2 infection and COVID-19 vaccination. We explain why it is important for 
medical diagnosis, care and research to use the new terms (PCVS, ACVS and PACVS) in order to avoid confusion 
and misinterpretation of the underlying causes of disease and to enable optimal medical therapy. We do not 
recommend to use the term “Post-Vac-Syndrome” as it is imprecise. The article also serves to address the current 
problem of “medical gaslighting” in relation to PACS and PCVS by raising awareness among the medical pro-
fessionals and supplying appropriate terminology for disease.   

1. Introduction 

Starting with the first cases reported in China in December 2019 [1, 
2], as of April 2023, there have been over 760 million confirmed coro-
navirus disease 2019 (COVID-19) cases (generally defined as positive 
tests for the infection with severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2)) worldwide, and over 13 billion COVID-19 vaccine 
doses have been administered, according to the World Health Organi-
zation (WHO). 

In most people, COVID-19 disease progresses without major com-
plications or escalation to a more severe course. Disease severity is 
associated with several factors [3], including older age and pre-existing 
health conditions like diabetes, arterial hypertension and obesity [4] as 
well as the individual vitamin D level [5–7], pre-existing immunity to 
circulating human coronaviruses before the SARS-CoV-2 pandemic [8], 

previous SARS-CoV-2 infection [9,10], co-infections (e.g. with 
Epstein-Barr virus) [11,12] and gut microbial dysbiosis [13]. From an 
epidemiological point of view, environmental factors including air 
pollution, climate and chemical exposures also play a role in relation to 
the pandemic [14]. The COVID-19 case fatality rate is mainly 
age-dependent [15] and generally fell over the course of the pandemic 
parallel to the occurrence of novel SARS-CoV-2 variants [16,17]. 

After the acute phase of a SARS-CoV-2 infection, a proportion of 
those infected show persistent somatic symptoms over weeks, months 
and even years, including general tiredness, muscle pain, difficulties 
when breathing, tingling extremities, chest pain or a lump in the throat 
[18]. This post-COVID-19 condition is termed “long COVID” and is also 
referred to as “post-acute sequelae of COVID-19”, “post-COVID-19 syn-
drome”, “post-COVID conditions” or post-acute COVID-19 syndrome 
(PACS) (a term we recommend and use in this work). PACS “has a 
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multifactorial nature and multiple pathophysiological factors at play” 
[19] and is a “multisystemic illness encompassing ME/CFS [myalgic 
encephalomyelitis/chronic fatigue syndrome], dysautonomia, impacts 
on multiple organ systems, and vascular and clotting abnormalities” 
[20] whereby specific types of PACS can be defined depending, for 
example, on the type of symptoms [21–24], severity of symptoms [25] 
or the timeline of the symptoms’ appearance [26,27]. The probability of 
developing PACS depends on many factors, including the type of 
SARS-CoV-2 variant infected with. For example, the odds of PACS 
development is reduced with the SARS-CoV-2 omicron variant, 
compared to the delta variant [28]. According to data from the UK 
(December 2021 to March 2022, n = 56003 adults), 4.5% people 
experienced PACS (after infection with the Omicron variant), and 10.8% 
(after infection with the Delta variant) [28]. 

While according to the WHO more than 350 COVID-19 vaccines are 
currently in preclinical or clinical development (January 2023), ten 
have already been approved by the WHO for global use. The vaccines 
can be divided into four different types: “inactivated virus vaccines 
(Sinopharm’s Covilo, Sinovac’s CoronaVac, and Bharat Biotech’s 
Covaxin), messenger RNA (mRNA) vaccines (Moderna’s Spikevax 
mRNA-1273 and Pfizer–BioNTech’s Comirnaty BNT162b2), adenovirus 
vector–based vaccines (AstraZeneca’s Vaxzevria and Covishield ChA-
dOx1 and Johnson & Johnson–Janssen’s Ad26. COV2. S), and adju-
vanted protein vaccines (Novavax’s Nuvaxovid and Covovax NVX- 
CoV2373).” [29]. In addition, there are other vaccines in use that have 
been approved by other regulatory authorities (e.g. the self-amplifying 
COVID-19 mRNA vaccine GEMCOVAC-19 and the DNA plasmid based 
COVID-19 vaccine, both approved for emergency use in India). 

The global COVID-19 vaccination campaign started in December 
2020 and is ongoing. Currently the global COVID-19 vaccine campaign 
faces two challenges: a decrease in the vaccine’s efficacy in preventing a 
more severe COVID-19 disease course and/or death, and in parallel an 
increased recognition and awareness in relation to possible problems 
with the vaccine’s safety. 

While a recent mathematical modelling study estimated that the 
global COVID-19 vaccination campaign prevented 14.4 million deaths 
from COVID-19 in 185 countries and territories [30] (but see also a 
critical evaluation of the methodology of this study [31]), the efficacy of 
the available COVID-19 vaccines is declining as novel SARS-CoV-2 
variants emerge [32,33]. The current use of a bivalent booster for the 
two available mRNA COVID-19 vaccines (including the wild-type 
(Wuhan-Hu-1) and Omicron (BA.1) SARS-CoV-2 spike messenger 
RNAs) “likely only represents a temporizing measure until variants 
emerge”, and the “need to repeatedly vaccinate at-risk populations, 
combined with the documented emergence of a new dominant 
SARS-CoV-2 variant approximately every 3–4 months, presents a public 
health dilemma.” [34]. In addition, the “long-term consequences of 
ongoing, repeated vaccination campaigns against COVID-19 for viral 
ecology and viral mutations inducing vaccine resistance” is seen as a 
potential problem, and there is also the serious concern of the risk of 
“repeated vaccination to cause vaccine exhaustion and, consequently, 
reduce protection against microbial infection” [35]. Repeated vaccina-
tion with the same antigen has been shown to induce overstimulation of 
CD4+ T cells and subsequent development of autoantibody-inducing 
CD4+ T cells [36]. 

The protection gained from a COVID-19 vaccination booster dose 
diminishes with increasing number of booster doses received, as 
recently found [37]. Repeated vaccination and confrontation with novel 
antigen variants are associated with the immune memory phenomenon 
of “original antigenic sin” (leading to less efficient immune responses in 
comparison to the original antigen variant) and “immune imprinting” 
(leading to a progressively narrowed immune response towards a new 
antigen variant) [38]. That the “vaccine-induced immune imprinting 
against the S [spike] protein partially inhibits the response against the N 
[nucleocapsid] protein after SARS-CoV-2 infection” has been shown 
already [39], and a recent study came to the conclusion that “protective 

effects from the humoral immunity and cellular immunity established by 
the conventional immunization were both profoundly impaired during 
the extended vaccination course.” [40]. Immune imprinting was also 
concluded to be the reason for the unexpectedly reduced efficacy of the 
novel bivalent COVID-19 vaccines since the “immune systems of people 
immunized with the bivalent vaccine, all of whom had previously been 
vaccinated, were primed to respond to the ancestral strain of SAR-
S-CoV-2” [41]. Also the “antibody dependent enhancement” (ADE) 
mechanism becomes relevant, as demonstrated by new results showing 
the “possible emergence of adverse effects caused by these [antibodies] 
in addition to the therapeutic or preventive effect”; some sera of 
mRNA-vaccinated individuals were observed to “gradually exhibited 
dominance of ADE activity in a time-dependent manner” [42]. The 
recent documentation of an immunoglobulin G4 (IgG4) dominated im-
mune response after three doses of the Pfizer BNT162b2 COVID-19 
vaccine [43], possibly inducing immune tolerance [44], must also be 
considered in this context. 

With regard to the safety of the vaccines, adverse effects following 
COVID-19 vaccination are increasingly being noticed and studied, 
including cardiovascular [45–49], neurological [50–53] as well as 
autoimmune and inflammatory [54–59] disorders. 

Researchers and doctors around the world are confronted with pa-
tients with various symptoms after SARS-CoV-2 infection and/or 
COVID-19 vaccination. In the work presented here, we address the 
current need for appropriate medical terminology that classifies the 
syndromes associated with SARS-CoV-2 infection and COVID-19 vacci-
nation, based on specific similarities and differences of these conditions. 

2. The need for a new unified medical terminology: COVID-19, 
PACS, PCVS, ACVS and PACVS 

Based on the facts summarised so far in the introduction, we 
hypothesise that (i) the COVID-19 vaccination side effects have specific 
similarities and differences to acute COVID-19 and PACS, that (ii) a new 
term should be used to refer to these side effects (post-COVID-19 
vaccination syndrome, PCVS, colloquially “post-COVIDvac-syndrome”), 
and that (iii) there is a need to distinguish between an acute COVID-19 
vaccination syndrome (ACVS) and a post-acute COVID-19 vaccination 
syndrome (PACVS) – in analogy to acute COVID-19 and PACS (“long 
COVID”). 

Fig. 1 visualises the definition of the terms. Based on this concept, the 
syndromes can be classified according to their cause (infection/vacci-
nation) and according to their general temporal manifestation (acute/ 
chronic). The transition from the acute to the chronic phase is fluid and 
not abrupt. 

Fig. 2 visualises our concept, according to which the acute phases 
(COVID-19, ACVS) and the chronic phases (PACS, PACVS) of both syn-
drome types (infection-related and vaccination-related) show 

Fig. 1. Definition of the terminology of syndromes with respect to the causative 
factor (infection/vaccination) und their general temporal manifestation. The 
colour gradient shows that it is a spectrum where the initial syndrome can 
change to the following syndrome. 
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similarities in symptomatology, although characteristic differences also 
exist (Fig. 2 (a,b)). The entire symptom spectrum of PCVS thus has 
similarities but also characteristic differences to COVID-19 and PACS 
(Fig. 2 (c)). 

Table 1 provides translations of the three newly defined terms into 
major European languages to facilitate the application of the new terms 
in the local language. 

3. SARS-CoV-2 infection- and COVID-19 vaccination-induced 
syndromes: similarities and differences 

The clinical symptoms of COVID-19 depend on the disease severity 
and most commonly include fever, cough, fatigue and dyspnoea [60,61] 
while the symptoms are differentially present through the disease course 
[61] and, dependent on the severity of the disease, may lead to mani-
festation of an acute respiratory distress syndrome [62,63]. The types 
and severity of COVID-19 symptoms were found also to depend on the 
SARS-CoV-2 variant of infection [64–67]. 

In a subset of people infected with SARS-CoV-2 and developing 
COVID-19, symptoms can persist after the acute phase for months and 
even years [68]. Common symptoms of this post-COVID-19 condition 
(PACS, “long COVID”) include fatigue, dyspnoea, myalgia, chest pain, 
cough and sputum production [69–71] but can also include ones asso-
ciated with pathophysiological states and processes in all organ systems. 
There is therefore a clear overlap between the symptoms of COVID-19 
and PACS. The number of PACS symptoms was shown to be also 
dependent on the type of SARS-CoV-2 variant of infection (e.g. higher 
number of symptoms in individuals infected with the original (Wuhan) 
variant compared to those with the Alpha or Delta ones [66]). For the 
definition of PACS, the time interval between SARS-CoV-2 infection/-
COVID-19 and the duration of the subsequent symptoms is relevant as 
well. According to the WHO, PACS is characterized by “the continuation 
or development of new symptoms 3 months after the initial SARS-CoV-2 
infection, with these symptoms lasting for at least 2 months with no 
other explanation” [72]. According to the US Centers of Disease Control 
and Prevention (CDC) however, the symptoms need to be present for “4 
weeks or more after the initial phase of infection” [73]. COVID-19 and 

Fig. 2. Visualisation of the terminology in the form of Venn diagrams based on overlapping symptoms, in terms of (a) COVID-19 and ACVS, (b) PACS and PACVS, 
and (c) COVID-19, PCVS and PACS. 

Table 1 
The three newly defined terms for COVID-19 vaccine-induced syndromes in 
major European languages.   

Post-COVID-19 
vaccination syndrome 
(PCVS, “post- 
COVIDvac-syndrome”) 

Acute COVID-19 
vaccination 
syndrome (ACVS) 

Post-acute COVID- 
19 vaccination 
syndrome 
(PACVS) 

German Post-COVID-19- 
Impfsyndrom (PCIS, 
“Post-COVIDvac- 
Syndrom”) 

Akutes COVID-19- 
Impfsyndrom 
(ACIS) 

Post-akutes COVID- 
19-Impfsyndrom 
(PACIS) 

French Syndrome post- 
vaccination COVID-19 
(SPVC) 

Syndrome aigu de 
vaccination 
COVID-19 (SAVC) 

Syndrome post-aigu 
de vaccination 
COVID-19 (SPAVC) 

Italian Sindrome post 
vaccinazione COVID-19 
(SPVC) 

Sindrome acuta da 
vaccinazione 
COVID-19 (SAVC) 

Sindrome post- 
acuta da 
vaccinazione 
COVID-19 (SPAVC) 

Hispanic Síndrome 
postvacunación COVID- 
19 (SPVC) 

Síndrome agudo de 
vacunación 
COVID-19 (SACV) 

Síndrome 
postvacunal agudo 
por COVID-19 
(SPAVC)  
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PACS appear to represent specific states (acute vs. chronic) in a spectrum 
of the disease caused by the SARS-CoV-2 infection, where the transition 
between COVID-19 and PACS is fluid (with the temporal boundary still 
defined differently) and there is an asymmetry of the two syndromes 
(PACS without prior SARS-CoV-2 infection: not possible; SARS-CoV-2 
infection without subsequent PACS: possible). The PACS symptoms 
can last for years; a recent study found that “the proportion of patients 
with at least 1 post-COVID-19 symptom 2 years after acute infection was 
59.7% for hospitalized patients and 67.5% for those not requiring hos-
pitalization” [74]. Although PACS has unique characteristics, post-acute 
infection syndromes (PAIS) can also be present after other types of in-
fections [75–79]. For example, “post-infectious fatigue” (also termed 
“post-infectious fatigue syndrome”) and ME/CFS has been documented 
after infection with influenza viruses [80–82], Dengue virus [83,84], 
Puumala virus [85], Epstein-Barr virus [86–89], enterovirus [90], 
human parvovirus B19 [91], the spirochete Borrelia [92–95], bacterium 
Coxiella burnetii [96] and the protozoan Giardia [97–103]. A relatively 
widespread and increasingly researched PAIS is for example the 
“post-treatment Lyme disease syndrome” (also known as “post-Lyme 
syndrome”) with fatigue also a key symptom [104–107]. PACS is 
therefore a type of PAIS. What must also be taken into account is that 
after acute illnesses, physical and cognitive impairments can occur, 
especially if intensive medical care has been provided. This phenome-
non, known as “post-intensive care syndrome” (PICS) [108–112], is also 
relevant for PACS [113–119] (and in principle also for PACVS). 

With regard to the side-effects of COVID-19 vaccinations, the most 
frequent ones are mild to moderate, non-serious and include fatigue, 
pain at the site of injection, fever, chills, muscle pain, joint pain, and 
headache lasting a few days [120–134], indicating generally a transient 
production of type I interferons as part of the immune system’s reaction 
to a pathogen [135]. In addition, severe adverse events (side effects) can 
occur and the phenomenon of long-lasting non-severe side effects is 
reported. The symptoms a person experiences after a COVID-19 vacci-
nation (independent of the time after vaccination and the duration of the 
symptoms) can be generally assigned to the newly defined PCVS 
(“post-COVIDvac-syndrome”). Although in most of the vaccinated peo-
ple the acute symptoms after vaccination disappear after a few days, the 
symptoms remain for weeks or months in some. For example, Riad et al. 
[121] reported that 3% of the vaccine recipients experienced side effect 

symptoms for longer than 1 week, and 1.4% for longer than 1 month. A 
similar results was published by Klugar et al. [125] (4.6% for > 1 week 
and 0.2% > 1 month). This supports our notion that there is a need to 
distinguish between an acute and a chronic form of PCVS: ACVS (acute) 
and PACVS (chronic). 

Concerning the similarity of symptoms between acute COVID-19 and 
ACVS, fatigue is a non-severe adverse event symptom shared by both 
conditions [60,136]. ACVS can manifest in different ways, with for 
example anaphylaxis [137–142] and vasovagal syncope/presyncope 
[143] that can follow immediately after vaccination. In 2021, a specific 
lot (41L20A) of the Moderna COVID-19 vaccine was discovered in the 
USA associated with a disproportionately frequent triggering of severe 
allergic reactions and the California Department of Public Health rec-
ommended to pause the administration of vaccines from this lot [144]. 

In the worst case, COVID-19 and ACVS (and PACVS) can lead to 
death. What distinguishes death in both cases is the timing between 
infection/vaccination and occurrence of death (see. Fig. 3). While the 
distribution of time intervals with respect to COVID-19 symptom onset 
to death peaks at about 1–3 weeks (depending on many factors including 
the SARS-CoV-2 variant of infection, age and sex of the deceased 
infected) [145,146] (Fig. 3(a,b)), the distribution of time intervals be-
tween COVID-19 vaccination and associated deaths follows a 
double-exponential decay function with the most cases immediately 
after vaccination [147] (Fig. 3(c)). 

Severe side effects of COVID-19 vaccination have particularly an 
overlap with symptoms of COVID-19. For example, myocarditis and 
pericarditis have been found in association with COVID-19 [148–156] 
and COVID-19 vaccination [46,148,157–174] with the onset of cardio-
vascular symptoms after vaccination normally occurring a few days after 
vaccination [158,160–162,174,175]. While COVID-19 vaccine induced 
myocarditis/pericarditis generally fall in the category ACVS, cases in the 
category PACVS seem to occur too (e.g. 3 months after vaccination 
[176]). More precise data is currently virtually non-existent, as the 
observation period of the approval and post-marketing studies does not 
take this long period of time into account and as the data is also much 
more difficult to collect. For example, proof must be provided that the 
vaccination is causally responsible for the disease. This can be done, for 
example, through the detection of mRNA and/or spike proteins from the 
COVID-19 vaccine. The spike protein (but not the nucleocapsid protein) 

Fig. 3. Latency between COVID-19 disease onset or COVID-19 vaccination and associated death. (a) Distribution of time intervals of COVID-19 symptom onset to 
death (n = 3478, range: 1–97 days) based on data from South Korea (19 January 2020–10 January 2022, covering the phase of the pandemic where the wild-type 
(Wuhan-Hu-1), alpha, delta and omicron (BA.1) variants were present) [145]. A double-exponential function is fitted to the data (r2 

= 0.9597). (b) Distribution of 
time intervals between SARS-CoV-2 infection to death (n = 63,855) as a function of sex, age and four time periods during the pandemic based on data from the 
United Kingdom (1 January 2020–20 January 2021, covering the phase of the pandemic where the wild-type (Wuhan-Hu-1) and alpha variants were present) [146]. 
(c) Distribution of time intervals between COVID-19 vaccination and associated deaths (n = 33,904) according to data from the US Vaccine Adverse Event Reporting 
System (VAERS) (based on 1509,410 reports through January 20, 2023). The distribution follows a double-exponential decay function (red) (r2 = 0.9819). However, 
it should be noted that there is very likely a reporting bias, i.e. the probability of reporting deaths after vaccination is higher the closer the death occurred to the time 
of vaccination. Therefore, it must be assumed that the exponential decline in reality is slower than the data shows. 
(b) Reprinted and modified from Ward & Johnson [146], with permission from the publisher. 
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could be detected, for example, “within the foci of inflammation in both 
the brain and the heart, particularly in the endothelial cells of small 
blood vessels” in an individual that collapsed 2 weeks after the third 
dose of the COVID-19 vaccine and died 1 weeks after this incidence 
[177]. The SARS-CoV-2 spike protein was also detected in cardiac tissue 
in individuals experiencing intramyocardial inflammation after 
COVID-19 vaccination, including a case with symptoms 21 days after 
vaccination and successful mRNA detection [178]. Furthermore, the 
presence of the SARS-CoV-2 spike protein was found in varicella zoster 
virus (VZV) lesions in a patient suffering from VZV reactivation after 
COVID-19 vaccination [179]. 

Besides myocarditis/pericarditis due to SARS-CoV-2 infection/ 
COVID-19 and COVID-19 vaccination, other severe health conditions 
were observed, including neurological ones and issues by the reac-
tivation of chronic infections. For example, transverse myelitis has been 
documented due to COVID-19 [180–186] and COVID-19 vaccination 
[187–194]. In addition, VZV and herpes simplex virus, cytomegalovirus 
and Epstein-Barr virus reactivation was found to be possibly occurring 
due to COVID-19 [11,12,195–204] and COVID-19 vaccination 
[205–213]. The reactivation of chronic infection seems to be also 
associated with PACS. For example, Gold et al. found 66.7% of long 
COVID patients to be positive for Epstein-Barr virus reactivation 
(compared to 10% in control subjects) [214]. Another complication is 
thrombosis which has been documented in association with COVID-19 
[215–229] and COVID-19 vaccination [230–233]. In case of COVID-19 
vaccination, vaccine-induced immune thrombotic thrombocytopenia 
(VITT), which can lead to cerebral venous sinus thrombosis, has been 
found to be particularly associated with the adenovirus vector-based 
COVID-19 vaccines [234–242]. Another example are retinal arter-
y/vein occlusions induced by SARS-CoV-2 infection [243–262] and 
COVID-19 vaccination [263–292], which can thus be considered part of 
the symptoms of COVID-19 and PCVS. Noteworthy, induced retinal 
artery/vein occlusions induced COVID-19 vaccination were found to be 
“more common than anticipated” [263]. According to a case-series by 
Ashkenazy et al. [245], the median time from COVID-19 diagnosis to 
onset of retinal vein/artery occlusion symptoms was 6.9 weeks (range: 
1–13 weeks). Shorter time-spans have been documented too, e.g. 3 days 
[248] as well as a case of central retinal vein/artery occlusion 8 months 
after COVID-19 (and thus falling in the category PACS) [293]. For the 
case of retinal vein/artery occlusion symptoms after COVID-19 vacci-
nation, the median time from vaccination diagnosis to onset of retinal 
vein/artery occlusion symptoms is significantly shorter, i.e. median 9 
days (range: 15 min to 61 days) (based on the case reports cited above) 
with cases of fast onset of symptoms, e.g. within 15 min after vaccina-
tion [267], and late onsets in the range of 1–2 months after vaccination 
[269,274,288]. While most cases therefore can be classified as part of 
ACVS, cases of vaccine-induced central retinal vein/artery occlusion 
associated with PACVS can apparently happen too. The time to onset of 
symptoms of central retinal vein/artery occlusion is therefore one aspect 
that generally distinguishes SARS-CoV-2 infection- and COVID-19 vac-
cination-induced cases. With regard to hepatitis after COVID-19 vacci-
nation, several cases have been reported [294–303] and vaccine 
SARS-CoV-2 mRNA has been found in the cytoplasm of hepathocytes 
in a case of COVID-19 vaccine-related hepatitis about 2 weeks after 
vaccination, demonstrating that “lipid nanoparticles bearing mRNA 
molecules encoding SARS-CoV-2 proteins can reach hepatocytes under 
certain circumstances and deliver mRNA in high quantities that could be 
used by the translational machinery of the cells to produce spike” [304]. 

The examples given here illustrate that COVID-19, PACS and PCVS 
can cause overlapping illnesses with corresponding overlapping symp-
toms. An important distinguishing factor seems to be the length of time 
between the onset of the disease/symptoms and the infection or 
vaccination. 

With regard to the two subtypes of PCVS, the chronic form, i.e. 
PACVS, is increasingly being addressed and researched. In January 2022 
this topic was addressed in an article in Science concluding that the 

COVID-19 vaccines “may cause rare, Long Covid–like symptoms”. 
Different terms were used so far to refer to this conditions, including 
“Long post-COVID vaccination syndrome (LPCVS)” [305,306], “post--
vaccination individuals with PASC-like symptoms” [307] or “autoim-
mune post-COVID vaccine syndromes” [57]. In German speaking 
countries, the term “Post-Vakzin-Syndrom” or “Post-Vac-Syndrom” 
(translated into “post-vac syndrome”) is increasingly used in the media 
to refer to this condition. Also the Swiss Agency for Therapeutic Prod-
ucts (Swissmedic) adopted this term recently in their communications 
[308]. According to the innovative study of Patterson et al. [307], the 
predominant (non-severe) shared symptoms of PACS and PACVS are 
fatigue, neuropathy, brain fog and headache, where shortness of breath 
and loss of taste/smell is less frequent in PACVS compared to PACS. The 
symptoms associated with the myalgic encephalomyelitis/chronic fa-
tigue syndrome (ME/CFS) have a significant overlap with the symptoms 
of PACS [309–313] and PACVS (see for example the Individual Case 
Safety Reports for “chronic fatigue syndrome” associated with 
COVID-19 vaccination documented in the EudraVigilance European 
Database for Suspected Adverse Drug Reaction Reports, EDSADRR) 
[314]. Unfortunately, studies that explicitly investigate the occurrence 
of ME/CFS after COVID-19 vaccination, i.e. as part of PACVS, have not 
yet been published. Such studies are also urgently needed because there 
is already “epidemiological, clinical and experimental evidence that 
ME/CFS constitutes a major type of adverse effect of vaccines” [315]. 

According to an observation in 120 PACVS patients, the syndrome is 
generally characterized by fatigue with post exercise malaise, cognitive 
disorders, headaches, visual disturbances, joint and muscle pain, dis-
turbances of the heat-cold regulation and sudden fast heartbeat without 
apparent reason (Jörg-Heiner Möller, personal communication). 

With respect to fundamental pathophysiological processes underly-
ing COVID-19, PACS and PCVS, the following aspects are of importance: 
autoantibodies, vascular disorders, amyloid fibrin microclots, hyper-
activated platelets as well as circulating SARS-CoV-2 mRNA and 
proteins. 

Autoantibodies were detected during the acute phase of COVID-19 
[316–333], months afterwards (predicting PACS symptoms) [334, 
335], in PACS [336–340], and in PCVS [295,298,341–365]. In the 
absence of PCVS after COVID-19 vaccination, autoantibodies are 
generally not present [366–368]. However, in some documented cases, 
individuals have shown a significant increase in antiphospholipid IgM 
autoantibody levels, for example, after each COVID-19 vaccine dose 
(with accompanying transient fatigue and malaise) [368]. 

Endotheliitis has been documented occurring in the acute phase of 
COVID-19 [369–374], but also after COVID-19 vaccination [375,376]. 
Endotheliopathy has been also shown in PACS [377,378]. Disturbances 
of the blood-brain barrier integrity were found during COVID-19 
[379–381] and after COVID-19 vaccination [382–384]. 

Amyloid fibrin microclots and hyperactivated platelets have been 
found in the blood plasma of patients with COVID-19 [385,386] and 
PACS [386–389] (see Fig. 4). No study about amyloid fibrin microclots 
and hyperactivated platelets in the blood of living individuals with PCVS 
(i.e. ACVS and PACVS) have been published yet but corresponding ob-
servations have already been made during medical examinations (Beate 
R. Jaeger, personal communication). Microthrombi were detected in 
biopsies of tissue in case of COVID-19 [390–393] and PCVS (in general 
in the case of VITT) [394–402]. 

In COVID-19 and PACS, circulating SARS-CoV-2 proteins and mRNA 
in the blood were detected by several groups (see Fig. 5). 

Schultheiß et al. [403] found circulating SARS-CoV-2 spike protein 
S1 subunits in the blood plasma in 64% of unvaccinated patients with 
ongoing PACS (and in 35% with prior COVID-19 but no PACS) (Fig. 5 
(a)). Interestingly, circulating spike protein S1 subunit levels showed a 
trend toward a positive correlation with SARS-CoV-2 nucleocapsid 
antibody levels. 

Swank et al. [404] reported the detection of SARS-CoV-2 spike 
(full-length and S1 subunit) and nucleocapsid protein in in the blood 
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plasma from patients with PACS (Fig. 5(b)). Analyses were performed 
up to 12 months post PACS diagnosis and spike proteins were detected in 
a certain number of samples by this time. However, a drawback of the 
study is that 58.3% of PACS patients received one or more COVID-19 
vaccinations during the respective study interval, which is a confounder. 

Patterson et al. [405] found that the SARS-CoV-2 spike protein S1 
subunit was expressed in non-classical monocytes (CD14lowCD16+) from 
the blood of individuals with severe COVID-19 and PACS (up to 15 
months post-infection) (Fig. 5(c)). The S1 protein subunit in 
non-classical monocytes was interpreted by the authors to be “retained 
from prior infection or phagocytosis of infected cells undergoing 
apoptosis and is not the result of persistent viral replication”. An “im-
mune response to persistent viral antigens, specifically the S1 fragment 
of the spike protein” is considered by the authors to be an important 
pathophysiological process of PACS. 

Ram-Mohan et al. [406] used quantitative (qPCR) and digital poly-
merase chain reaction (dPCR, i.e. the third generation of PCR enabling 
absolute quantification without a standard curve) to quantify 
SARS-CoV-2 mRNA from blood plasma of COVID-19 patients. In 23.0% 
(44 of 191) of them, viral mRNA could be detected in the plasma with 
dPCR (compared to 1.4% (2 of 147) by qPCR). The mRNA load was 
correlated with maximum disease severity (Fig. 5(e)). In a subsequent 
study, Ram-Mohan et al. [407] found that COVID-19 patients in which 
SARS-CoV-2 mRNA could be detected in the blood had a higher chance 
of developing PACS symptoms later on (at least 4 weeks afterwards) 
compared to those where mRNA could not be detected (83% vs. 41.2%). 
mRNA detected on presentation with COVID-19 was associated with 
significantly higher rates of PACS for moderate COVID-19 severity. 

Craddock et al. [408] detected SARS-CoV-2 mRNA (using 
droplet-digital PCR, ddPCR) in 59% of PACS patients, where the prob-
ability of detection correlated with days of hospitalization. SARS-CoV-2 
spike protein was found in 64% in the blood of PACS patients, and in 

33% of the PACS patients, both SARS-CoV-2 mRNA and SARS-CoV-2 
spike protein could be detected. None of the subject of the control 
population (subjects who had a SARS-CoV-2 infection in the past but did 
not develop PACS) had both detected at the same time. PACS patient 
tended to show an increased number of small extracellular vesicles (EVs) 
(25–150 nm) in the blood plasma compared to the controls. In 43% of 
the plasma samples from PACS patients in which the SARS-CoV-2 spike 
protein could be detected, the EVs showed positivity for the SARS-CoV-2 
spike protein. The SARS-CoV-2 spike protein was not detected in any of 
the EVs of the subjects in the control group. The results are shown in 
Fig. 5(f)). 

In PACS patients, SARS-CoV-2 proteins and mRNA were also found in 
the tissue. Goh et al. [409] reported the detection of the SARS-CoV-2 
nucleocapsid protein and spike protein in the appendix of an individ-
ual with PACS and loymphoid hyperplasia of the appendix 426 days 
after symptom onset. The SARS-CoV-2 nucleocapsid protein was also 
detected in the skin. In another patient with breast cancer and PACS, 
viral mRNA as well as the SARS-CoV-2 nucleocapsid protein and spike 
protein were found in the tumor-adjacent area 175 days after COVID-19 
infection and related symptom onset. 

Regarding circulating SARS-CoV-2 proteins and mRNA in the blood 
of individuals after COVID-19 vaccination and in patients with PCVS, 
some important research work on this has also been published so far 
(Fig. 6). 

Castruita et al. [410] detected in 9.3% of a cohort of vaccinated 
Hepatitis C virus positive patients full-length or traces of SARS-CoV-2 
spike mRNA vaccine sequences up to 28 days after COVID-19 vaccina-
tion (Fig. 6(a)). The mRNA nucleotide sequences detected in the blood 
plasma was almost 100% identical to those used in the specific mRNA 
COVID-19 vaccines (Pfizer-BioNTech (BTN162b2) and Moderna 
(mRNA-1273)). 

Bansal et al. [411] demonstrated the presence of SARS-CoV-2 spike 

Fig. 4. (a) Amyloid fibrin microclots and (b) hyperactivated platelets in in the blood plasma (platelet poor plasma) in COVID-19 and PACS, compared to healthy 
controls. Aggregated platelets are indicated by white arrows. Amyloid fibrin microclots are visualized with Thioflavin T (green fluorescence) and platelets with PAC-1 
(green fluorescence) and CD62P-PE (purple fluorescence). 
(a) Reprinted and modified from Pretorius et al. [386], with permission from the publisher. 
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protein S2 subunit content in EVs (i.e. exosomes) from the blood plasma 
of COVID-19 vaccinated individuals 14 days after the first vaccine dose, 
14 days after the second one and 4 months after the second one (Fig. 6 
(b)). The finding was confirmed with electron microscopy showing the 
SARS-CoV-2 spike protein in exosomes. The immunogenic potential of 
the exosomes was shown by immunizing mice with these exosomes. 

Fertig et al. [412] showed that “BNT162b2 vaccine mRNA remains in 
the systemic circulation of vaccinated individuals for at least 2 weeks, 

during which it likely retains its ability to induce S-protein expression in 
susceptible cells and tissues.” (Fig. 6(c)). The vaccine mRNA was over-
whelmingly detected in the plasma fraction. 

Ogata et al. [413] found that the spike protein S1 subunit is present 
in the blood plasma as early as day 1 after COVID-19 vaccination 
(mRNA-1273) and its concentration peaks on average 5 days after the 
vaccination with the first dose followed by a decline and reaching the 
limit of detection by day 14 (Fig. 6(d)). Spike protein S1 subunits could 

Fig. 5. Circulating SARS-CoV-2 proteins and mRNA in COVID-19 and PACS. (a) Spike protein concentration in blood plasma in individuals with and without PACS. 
(b) Time-dependent spike and nucleocapsid protein concentration in blood plasma in individuals with PACS and COVID-19. (c) Spike protein concentration in non- 
classical monocytes in healthy controls and individuals with severe COVID-19 and PACS. (d) Presence of SARS-CoV-2 mRNA in individuals with COVID-19 as a 
function of the maximum clinical COVID-19 severity. (e) Presence of SARS-CoV-2 mRNA in individuals with PACS as a function of the PACS severity. (f) Presence of 
SARS-CoV-2 mRNA (obtained with droplet digital-PCR (ddPRC), spike protein and extracellular vesicles (EV) with (with spike protein) in the blood plasma of in-
dividuals with PACS. A representative transmission electron microscopy (TEM) micrograph shows EVs (50.000 × magnification). The bar plot depicting the dif-
ferences in EVs in controls and PACS refers to small EVs. 
(a) Reprinted and modified from Schultheiß et al.[403], with permission from the publisher. (b) Reprinted and modified from Swank et al. [404], with permission 
from the publisher. (c) Reprinted and modified from Patterson et al. [405], with permission from the publisher. (d) Reprinted and modified from Ram-Mohan et al. 
[407], with permission from the publisher. (e) Reprinted and modified from Ram-Mohan et al., with permission from the publisher. (f) Reprinted and modified from 
Craddock et al. [408], with permission from the publisher (TEM image directly obtained by the author). 
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not be detected after the second vaccine dose. The full-length spike 
protein was detectable in around 23% (3/13) of the individuals about 2 
weeks after receiving the first dose of the vaccine. The nucleocapsid 
protein could not be detected (as expected). The study highlighted that 
the spike protein S1 subunit “can be detected by day 1 and is present 
beyond the site of injection and the associated regional lymph nodes”, 
proving that the vaccine reaches systemic circulation. The study was 
conducted with vaccine recipients that did not experience PCVS 
symptoms. 

Patterson et al. [307] investigated 50 post-vaccinated individuals 
who experienced PACS-like symptoms, i.e. PCVS symptoms (or PACVS 
symptoms, to be more precise), more than 4 weeks after vaccination and 
found significantly more spike protein S1 subunit concentrations in 
non-classical CD14lowCD16+ monocytes in the blood of vaccinated in-
dividuals who experienced PCVS symptoms compared to those who did 
not (Fig. 6(e)). This investigation also demonstrated that “CD16+ cells 
from post-vaccination patients also contained S1 protein months after 
vaccination” and that “these S1 positive, CD16+ cells also contained 
peptide sequences of S2, and mutant S1 peptides”. Furthermore, a link 
between elevations of specific cytokines (CCL5 (RANTES), sCD40L, IL-6, 
and IL-8) and “post-vaccination PASC-like symptoms” (i.e. PCVS/PACVS 
symptoms) was found where the IL-8 was identified as a “unique marker 
relative to PASC in post-vaccination individuals with PASC-like 
symptoms”. 

Yonker et al. [414] showed that adolescents that developed 
myocarditis after COVID-19 vaccination had higher levels of free 
full-length spike protein (unbound by antibodies) in their blood plasma 
compared to age-matched asymptomatic COVID-19 vaccinated control 
subjects (Fig. 6(f)). However, the time between vaccination and sample 
collection was different between these two groups (post-vaccine 
myocarditis: 4 days (1–19 days) (median, range), vaccinated control 
subjects: 14 days (4–21 days)). Nevertheless, the development of the free 
full-length spike protein levels in both groups over the days post 
vaccination were different, which reinforces the conclusion that circu-
lating spike protein levels are elevated in cases of post-COVID-19 mRNA 
vaccine myocarditis, i.e. PCVS (ACVS). 

In a case of a subject experiencing subacute monomelic radi-
culoplexus neuropathy, antibody testing in the cerebrospinal fluid (CSF) 
for the SARS-CoV-2 nucleocapsid protein was negative but positive for 
the SARS-CoV-2 spike protein, 2 months after the second COVID-19 
vaccine dose and 2.5 months after the first one (and symptoms onset) 
[415]. This case confirms that the proteins induced by COVID-19 
vaccination can be present in the CSF for a long time (months). 

Trace amounts of COVID-19 vaccine mRNA (from the Pfizer- 
BioNTech (BTN162b2) and Moderna (mRNA-1273) COVID-19 mRNA 
vaccines) could be detected in breastmilk of lactating mothers up to 45 h 
after vaccination (with an increased concentration in EVs compared to 
whole milk) [416]. Low levels of COVID-19 vaccine mRNA were also 
found in some breast milk samples from vaccinated mothers in a further 
study [417]. Another study, however, could not detect COVID-19 vac-
cine-associated mRNA in breast milk collected 4–48 h after vaccination 
[418] (but the validity of the study has been criticised [419]). 

Roltgen et al. [420] could demonstrate the presence of abundant 
SARS-CoV-2 spike protein in axillary lymph nodes of vaccinated in-
dividuals 16 days post-second dose and a still detectable amount 60 days 
post-second dose. The SARS-CoV-2 spike protein was present in the 
lymph node tissue as a reticular pattern around the germinal center B 
cells. 

From what has been presented and summarised here, it is clear that 
the SARS-CoV-2 spike protein plays an important role in COVID-19, 
PACS and PCVS. However, it must also be taken into account that the 
vaccine-induced protein is not identical to the natural one; in the Pfizer- 
BioNTech (BTN162b2) and Moderna (mRNA-1273) COVID-19 mRNA 
vaccine, for example, the RNA nucleobase N1-methylpseudouridine is 
incorporated to enhance protein expression and immune evasion [421]. 
These modifications could be relevant for differences in infection- and 
vaccine-related pathophysiological processes. 

The difference in the transmission of the SARS-CoV-2 genetic mate-
rial into humans (by infection via the nose and mouth, or by vaccination 
via injection into the muscle) can also make a difference in the patho-
physiological processes triggered by it. It should also be noted here that 
an accidental direct injection into the bloodstream can in principle also 
occur in the case of vaccination into the muscle, which is probably 
associated with an increased complication rate [422,423]. Rzymski and 
Fal pointed out that “in vivo evidence suggests that intravenous injec-
tion of [the] mRNA vaccine can potentially lead to myocarditis, while 
introducing adenoviral vector to bloodstream can possibly result in 
thrombocytopenia and coagulopathy” [422] (a reference to two studies 
in this regard [424,425]). 

Cosentino and Marino [426] pointed out that adverse effects of the 
COVID-19 vaccines could be related to excess SARS-CoV-2 spike pro-
duction in specific individuals “for too long and/or in inappropriate 
tissues and organs”, while the probability of this occurrence “is at pre-
sent unpredictable, since systemic biodistribution and disposition of the 
COVID-19 mRNA vaccine has so far never been considered an issue, and 
as a consequence it has never been studied as it would have actually 
deserved.” According to these authors, the problem is therefore the 
possibility of an excess of SARS-CoV-2 production, which can also last 
too long and/or at the same time can also happen at the wrong place (i.e. 
not primarily at the injection site). 

Another point to note is that contaminants (process- and product- 
related impurities) have been found in the COVID-19 vaccines. In a 
recent analysis of vials of the bivalent Pfizer-BioNTech (BTN162b2) and 
Moderna (mRNA-1273) COVID-19 mRNA vaccine, McKernan et al. 
[427] found DNA contaminations exceeding the safety limits of the 
European Medicines Agency (EMA) (330 ng/mg) and the U.S. Food and 
Drug Administration (FED) (10 ng/dose). 

Krutzke et al. [428] investigated the content of the adenovirus vec-
tor–based COVID-19 vaccines from AstraZeneca (ChAdOx1) and John-
son & Johnson–Janssen (Ad26. COV2. S) and found significant protein 
contaminations. In the three lots investigated of the AstraZeneca 
(ChAdOx1) vaccine, “about 70% of the detected protein content was of 
human and only 30% of virus origin” in one lot, and “approximately 
50% of detected proteins were of human origin” in the two other lots. 

Fig. 6. Circulating SARS-CoV-2 proteins and mRNA after COVID-19 vaccination and in PCVS. (a) SARS-CoV-2 spike mRNA in blood plasma as a function of type of 
vaccine and time after vaccination. Shown is the mapping of trimmed and filtered reads to the coding regions of the specific SARS-CoV-2 spike protein from the two 
COVID-19 vaccines. (b) Western blot showing the detection of SARS-CoV-2 spike protein S2 subunit in exosomes from blood plasma at 14 days after the first dose, 14 
days after the second dose and 4 months after the second dose of the COVID-19 vaccine. (c) Circulating mRNA in blood (plasma and white blood cells) at different 
time-points after BNT162b2 COVID-19 vaccination. Left shows the group average, right an example from a single individual. (d) SARS-CoV-2 spike and nucleocapsid 
protein concentration after COVID-19 vaccination. (e) Spike protein concentration in non-classical monocytes in the blood of COVID-19 vaccinated individuals with 
and without experiencing PCVS symptoms. (f) Free and total full-length SARS-CoV-2 spike protein concentrations in COVID-19 vaccinated individuals who developed 
myocarditis compared to healthy ones. Shown is also the concentration of free full-length and S1 subunit spike protein as a function of time after vaccination and for 
the two cohorts (myocarditis and healthy controls). 
(a) Reprinted and modified from Castruita et al. [410], with permission from the publisher. (b) Reprinted and modified from Bansal et al. [411], with permission from 
the publisher. (c) Reprinted and modified from Fertig et al. [412], with permission from the publisher. (d) Reprinted and modified from Ogata et al.[413], with 
permission from the publisher. (e) Reprinted and modified from Patterson et al. [307], with permission from the publisher. (f) Reprinted and modified from Yonker 
et al. [414], with permission from the publisher. 
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More than 1000 different human proteins could be identified that 
originate from the human T-REx-293 cells (human embryonic kidney 
cells from a female fetus transformed with adenovirus 5 DNA) used in 
the vaccine production. The specification limit for protein contamina-
tion defined by the EMA (400 ng), was significantly exceeded by the 
amount of protein contamination detected. In the Johnson & John-
son–Janssen (Ad26. COV2. S) vaccine samples, the protein contamina-
tion was significantly less (less than 1% of human origin). With regard to 
possible health-related effects of these process- and product-related 
impurities the authors concluded that given the significant amount of 
protein contamination in the AstraZeneca (ChAdOx1) vaccine “the 
question imposes itself, whether or not (some of) the impurities might 
have long-term immune-related side effects in some of the vaccinees”. 

As pointed out by Milano et al. [429] another concern are 
double-strand RNA (dsRNA) contaminations in COVID-19 mRNA vac-
cines. The presence of dsRNA has been documented by the EMA for the 
Moderna (mRNA-1273)) [430] and the Pfizer-BioNTech (BTN162b2) 
[431] COVID-19 vaccines. Since dsRNA has a high potential to induce 
immune-inflammatory reactions, Milano et al. concluded that this 
dsRNA contamination “could be hypothetically suspected to trigger the 
induction of myocarditis among other possible factors.” 

Another possibility to cause adverse effects of the COVID-19 vaccines 
are additives, such as the polyethylene glycol (PEG) contained in mRNA- 
based formulations [432–440] of the additives polysorbate 80, L-histi-
dine, ethylenediaminetetraacetic acid (EDTA), tromethamine and tro-
methamine hydrochloride [441–443]. 

4. Summary, conclusion and outlook 

In the previous sections, we presented our conclusion that three new 
terms for COVID-19 vaccination induced syndromes need to be intro-
duced (PCVS, ACVS and PACVS) for conditions that share similarities 
and differences to COVID-19 and PACS. We provided a literature review 
supporting the conclusion for the need to introduce these new terms, and 
studies were reviewed concerning similar and different symptoms 
associated with these infection- and vaccination-associated syndromes. 
In addition, possible underlying pathophysiological conditions were 
discussed. 

Two calls for action result from what has been presented so far. 
Firstly, the newly introduced technical terms (post-COVID-19 

vaccination syndrome, PCVS; acute COVID-19 vaccination syndrome, 
ACVS; and post-acute COVID-19 vaccination syndrome, PACVS) should 
be used in medical communication and documentation (scientific pub-
lications, medical documentation, etc.). The general and simplified 
version for PCVS, the term “post-COVIDvac-syndrome”, is recom-
mended for communication with the public. The term "post-vac-syn-
drome", which has been used from time to time in the media, should be 
replaced by the new terms, as they are more precise. The term “post-vac- 
syndrom” should not be used as it does not specify that this is a specific 
syndrome caused by the COVID-19 vaccines and not a syndrome caused 
by vaccination in general. The use of the new terms may help to ensure 
that vaccine-related side-effect syndromes are taken more seriously and 
reduce the likelihood that they will be mistaken for infection-related 
disease syndromes. It must not happen that people with side effects 
due to vaccination are not taken seriously and get misdiagnosed. The 
issue of diseases not being taken seriously has been the case in the past 
and is still partly prevalent for myalgic encephalomyelitis/chronic fa-
tigue syndrome (ME/CSF) [444,445] and PACS [446,447]. In the case of 
ME/CSF, many of those affected are frustrated by the “widespread 
negative stereotyping of patients and the marginalization and exclusion 
of patient voices by medical authorities” [445]. Concerning PACS, the 
“serious implications for individuals and society have been missing from 
public communication and pandemic policy” [447]. In a survey with 
PACS patients they described “encountering medical professionals who 
dismissed their experience, leading to lengthy diagnostic odysseys and 
lack of treatment options for Long Covid” [446]. This phenomenon, 

which has been called “medical gaslighting”, must not occur with the 
infection-related PACS or with the vaccination-related PCVS. In this 
context, it must also be remembered that the term was first coined by 
patients and not by doctors or scientists. The same happened with the 
term “Long Covid”, which was also first introduced by those affected 
[448]. According to Turner et al. “there is hesitancy among patients and 
researchers to acknowledge and openly discuss vaccine injury, due to 
fear of being labeled ‘anti-vax’. Patients with vaccine injury should be 
able to access medical care without fear of being stigmatized, and vac-
cine injury should be researched like any other disease.” [19]. Just as the 
term “Long Covid” (i.e. PACS) is now a recognised medical term, so too 
should the three new terms introduced here (PCVS, ACVS and PACVS). 
These new terms should also be introduced in the International Classi-
fication of Diseases (ICD) system, which already includes (in version 
ICD-10) the “post COVID-19 condition” (U09.9) (i.e. PACS) and 
COVID-19 (U09.9). The two present COVID-19 vaccine-associated codes 
T50. B95A (adverse effect of other viral vaccines, initial encounter) and 
U12.9 (COVID-19 vaccines causing adverse effects in therapeutic use, 
unspecified) should be replaced with the three newly introduced terms 
to provide clear ICD diagnostic codes for the COVID-19 vacci-
nation-induced disease conditions. At least the ICD diagnostic code 
“post-COVID-19 vaccination condition, unspecified” (in analogy to 
U09.9: “post COVID-19 condition, unspecified”) should be immediately 
introduced in the upcoming version of the ICD. 

Secondly, more research is urgently needed to further define and 
characterise the vaccine-induced syndromes. The similarities and dif-
ferences of the symptoms of these syndromes with COVID-19 and PACS 
need to be studied in detail. In addition, there needs to be detailed 
research into the pathophysiology of PCVS (i.e. ACVS and PACVS) and 
therapeutic options to help those affected. As there is already a 
specialisation on the part of physicians in private practice or facilities in 
hospitals for persons with PACS, this should also be implemented for 
PCVS. As far as the diagnosis of infection- and vaccine-related diseases is 
concerned, it must be noted that the situation has now been complicated 
by the fact that mixed forms between both causes are also possible. In 
general, four cases can be defined and should be distinguished (see  
Fig. 7): (i) COVID-19/ACVS (i.e. COVID-19 + ACVS), (ii) COVID-19/ 
PACVS (i.e. COVID-19 + PACVS), (iii) PACS/ACVS (i.e. PACS +
ACVS), and (iv) PACS/PACVS (i.e. PACS + PACVS). Unfortunately, there 
is almost no research on these second-order syndromes. Future studies 
are needed to precisely define these types of combined syndromes in 
terms of symptoms and pathophysiology. It should also be noted that the 
order of events will be relevant for the characteristics of the syndromes, 
i.e. it will probably be relevant whether the infection-related disease 
came first or the vaccination-related disease. 

In the course of differential diagnostics (with respect to the first- 
order syndromes (Fig. 1) and second-order syndromes (Fig. 7)), it 

Fig. 7. Definition of the terminology of second-order syndromes as a combi-
nation of infection- and vaccination-induced syndromes. PACS: post-acute 
COVID-19 syndrome. ACVS: acute COVID-19 vaccination syndrome, PACVS: 
post-acute COVID-19 vaccination syndrome. 
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could be useful to search for SARS-CoV-2 mRNA and proteins from 
infection and vaccination in the blood and tissue samples of patients. 
Since both mRNA COVID-19 vaccine sequences “have been modified 
and are only ~70% identical to the spike reference genome on a 
nucleotide level” [410], this helps in the differential diagnosis in terms 
of finding the cause of the disease (infectious or vaccine-related). Also 
the detection of COVID-19 vaccine associated SARS-CoV-2 proteins in 
non-classical CD14lowCD16+ monocytes, as pioneered by Patterson et al. 
[307], is promising in this respect. The examination of the blood of the 
sick person for amyloid fibrin microclots and hyperactivated platelets 
[385,386,388,389] is also obvious and probably also essential for pa-
tients with PACS and/or PACVS (and PCVS in general). 
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